Skip to main content

Qwen 3 LoRA Fine-Tuning (SFT)

This example shows how to perform Supervised Fine-Tuning (SFT) on a Qwen 3 model using LoRA in BF16 precision.

Configuration Highlights

  • Model: Qwen/Qwen3-0.6B
  • Technique: LoRA (Rank 16)
  • Precision: bf16
  • Dataset: OpenLLM-Ro/ro_gsm8k (Math reasoning in Romanian)

Running the example

surogate sft examples/sft/qwen3-lora-bf16.yaml

Config File (examples/sft/qwen3-lora-bf16.yaml)

model: Qwen/Qwen3-0.6B
output_dir: ./output

per_device_train_batch_size: 2
gradient_accumulation_steps: 4
sequence_len: 2048

recipe: bf16

lora: true
lora_rank: 16
lora_alpha: 32
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj

datasets:
- path: "OpenLLM-Ro/ro_gsm8k"
type: auto